流通池法在药物制剂中的应用进展

周畅, 方瑜, 杜青, 曹德英

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (21) : 1706-1711.

PDF(973 KB)
PDF(973 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (21) : 1706-1711. DOI: 10.11669/cpj.2021.21.002
综述

流通池法在药物制剂中的应用进展

  • 周畅, 方瑜, 杜青, 曹德英*
作者信息 +

Application Progress of Flow-Through Cell Method In Preparations

  • ZHOU Chang, FANG Yu, DU Qing, CAO De-ying*
Author information +
文章历史 +

摘要

流通池法是2020年版《中国药典》最新收载的溶出度测定方法,广泛应用于微球,纳米混悬剂、栓剂、膜剂及药物洗脱支架等的溶出度测定。在国外,应用流通池法以及对流通池法各种仪器参数的研究正逐渐成为溶出度研究的热点。在国内,关于流通池法的应用研究较少且缺乏针对性。笔者对流通池法的仪器、原理及特点进行整理,并对其在药物制剂中的应用进行归纳总结,旨在推动流通池法在我国制剂质量评价及溶出度测定等方面的应用,并与国际研究接轨。

Abstract

The flow-through cell method is the latest dissolution method included in the Chinese Pharmacopoeia. It is widely used in the dissolution texts of microspheres, nanosuspensions, suppositories, membranes, and drug-eluting stents. Abroad, the applications of the flow-through cell method and the studys of various instrument parameters of the flow-through cell method are gradually becoming the hotspot of dissolution researches. In China, there are few applied researches on the flow-through cell method and lack of targeted researches. This article sorts out the instruments, principles, and characteristics of the flow-through cell method, and summarizes the applications of the flow-through cell method in Preparations. It aims to promote the applications of the flow-through cell method in the quality evaluations and dissolution texts in our country and catch up international researches.

关键词

流通池法 / 剂型 / 药物释放 / 质量控制 / 仪器

Key words

flow-through cell method / dosage forms / drug dissolution / quality control / instruments

引用本文

导出引用
周畅, 方瑜, 杜青, 曹德英. 流通池法在药物制剂中的应用进展[J]. 中国药学杂志, 2021, 56(21): 1706-1711 https://doi.org/10.11669/cpj.2021.21.002
ZHOU Chang, FANG Yu, DU Qing, CAO De-ying. Application Progress of Flow-Through Cell Method In Preparations[J]. Chinese Pharmaceutical Journal, 2021, 56(21): 1706-1711 https://doi.org/10.11669/cpj.2021.21.002
中图分类号: R944   

参考文献

[1] Ch.P(2020) Vol Ⅳ(中国药典2020年版.四部)[S]. 2020:133-134.
[2] ZHAO J, YI H, LIU X Q, et al. Progress in application of flow-through cell method for determination of drug dissolution[J]. Chin Pharm J(中国药学杂志), 2014, 49(17):1486-1490.
[3] YE X J, CHEN Y, et al. Dissolution testing of glimepiride tablets and evaluation of in vivo-in vitro correlation[J]. Pharm Today(今日药学), 2020,27(1):1-10.
[4] XIE L, CHEN H, ZHANG Y, et al. Dissolution determination of metronidazole oral sticking tablets by flow-through cell method[J]. China Pharm (中国药师), 2020, 23(4):761-764.
[5] HAN X, PI J X,ZHANG Y, et al. Study on the determination of five indexes dissolution in xiaomi suppository by flow-cell dissolution method[J]. J Tianjin Univ Tradit Chin Med(天津中医药大学学报), 2018, 37(6):511-515.
[6] ZHANG N, FANG X M, HUANG S J, et al. Primary discuss on flow-cell elution release test method at stability of rapamycin on drug-eluting stents[J]. Chin J Pharm Anal(药物分析杂志), 2012, 32(4):575-577.
[7] RAWAT A, BHARDWAJ U, BURGESS D J. Comparison of in vitro-in vivo release of Risperdal® Consta® microspheres[J]. Int J Pharm, 2012, 434(1-2):115-121.
[8] ANDREAS C J, CHEN Y C, MARKOPOULOS C, et al. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release[J]. Eur J Pharm Biopharm, 2015, 97(Pt A):39-50.
[9] ANDREAS C J, PEPIN X, MARKOPOULOS C, et al. Mechanistic investigation of the negative food effect of modified release zolpidem[J]. Eur J Pharm Sci, 2017, 102:284-298.
[10] MARKOPOULOS C, VERTZONI M, SYMILLIDES M, et al. Two-stage single-compartment models to evaluate dissolution in the lower intestine[J]. J Pharm Sci, 2015, 104(9):2986-2997.
[11] YAMAGUCHI I S, KAMBAYASHI A, KOJIMA H, et al. Prediction of the oral pharmacokinetics and food effects of gabapentin enacarbil extended-release tablets using biorelevant dissolution tests[J]. Biol Pharm Bull, 2018, 41(11):1708-1715.
[12] APRSKÁŘOVÁ A, MOŽNÁ P, OGA E F, et al. Instrumentation of flow-through USP IV dissolution apparatus to assess poorly soluble basic drug products: a technical note[J]. AAPS Pharm Sci Tech, 2016, 17(5):1261-1266.
[13] BHATTACHAR S N, WESLEY J A, FIORITTO A, et al. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus[J]. Int J Pharm, 2002, 236(1-2):135-143.
[14] LETCHMANAN K, SHEN S C, NG W K, et al. Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles[J]. J Microencapsul, 2015, 32(4):390-400.
[15] MEDINA J R, SALAZAR D K, HURTADO M, et al. Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system[J]. Saudi Pharm J, 2014, 22(2):141-147.
[16] BIELEN N. Performance of USP calibrator tablets in flow-through cell apparatus[J]. Int J Pharm, 2002, 233(1-2):123-129.
[17] MILLER J H, DANIELSON T, PITHAWALLA Y B, et al. Method development and validation of dissolution testing for nicotine release from smokeless tobacco products using flow-through cell apparatus and UPLC-PDA[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2020, 1141:122012-122063.
[18] YOSHIDA H, KUWANA A, SHIBATA H, et al. Particle image velocimetry evaluation of fluid flow profiles in USP 4 flow-through dissolution cells[J]. Pharm Res, 2015, 32(9):2950-2959.
[19] FORREST W P, REUTER K G, SHAH V, et al. USP apparatus 4: a valuable in vitro tool to enable formulation development of long-acting parenteral (LAP) nanosuspension formulations of poorly water-soluble compounds[J]. AAPS Pharm Sci Tech, 2018, 19(1):413-424.
[20] VOISINE J M, ZOLNIK B S, BURGESS D J. In situ fiber optic method for long-term in vitro release testing of microspheres[J]. Int J Pharm, 2008, 356(1-2):206-211.
[21] RUDD N D, REIBARKH M, FANG R, et al. Interpreting in vitro release performance from long-acting parenteral nanosuspensions using USP-4 dissolution and spectroscopic techniques[J]. Mol Pharm, 2020, 17(5):1734-1747.
[22] RUDD N D, HELMY R, DORMER P G, et al. Probing in vitro release kinetics of long-acting injectable nanosuspensions via Flow-NMR spectroscopy[J]. Mol Pharm, 2020, 17(2):530-540.
[23] GONZALEZ M A, SMITH D F. Use of IVIVC in the development of oral extended-release formulations: a personal perspective[J]. Dis Technol, 2015, 22(2):35-42.
[24] ANDHARIYA J V, CHOI S, WANG Y, et al. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres[J]. Int J Pharm, 2017, 520(1-2):79-85.
[25] SHEN J, CHOI S, QU W, et al. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres[J]. J Controlled Release, 2015, 218:2-12.
[26] ANDHARIYA J V, SHEN J, CHOI S, et al. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres[J]. J Controlled Release, 2017, 255:27-35.
[27] KRÄMER J, STIPPLER E. Experiences with USP apparatus 4 Calibration[J]. Dis Technol, 2005,12(1):33-39.
[28] YOSHIDA H, KUWANA A, SHIBATA H, et al. Effects of pump pulsation on hydrodynamic properties and dissolution profiles in flow-through dissolution systems (USP 4)[J]. Pharm Res, 2016, 33(6):1327-1336.
[29] SPEER I, PREIS M, BREITKREUTZ J. Novel dissolution method for oral film preparations with modified release properties[J]. AAPS Pharm Sci Tech, 2018, 20(1):7.
[30] SIEVENS-FIGUEROA L, PANDYA N, BHAKAY A, et al. Using USP Ⅰ and USP Ⅳ for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films[J]. AAPS Pharm Sci Tech, 2012, 13(4):1473-1482.
[31] YAMAMOTO Y, KUMAGAI H, HANEDA M, et al. The mechanism of solifenacin release from a pH-responsive ion-complex oral suspension in the fasted upper gastrointestinal lumen[J]. Eur J Pharm Sci, 2020, 142:105107.
[32] TIPNIS N P, SHEN J, JACKSON D, et al. Flow-through cell-based in vitro release method for triamcinolone acetonide poly (lactic-co-glycolic) acid microspheres[J]. Int J Pharm, 2020, 579:119130.
[33] MCCARTHY C A, FAISAL W, O'SHEA J P, et al. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation[J]. J Controlled Release, 2017, 250:86-95.
[34] DíAZ DE LEÓN-ORTEGA R, D'ARCY D M, BOLHUIS A, et al. Investigation and simulation of dissolution with concurrent degradation under healthy and hypoalbuminaemic simulated parenteral conditions-case example Amphotericin B[J]. Eur J Pharm Biopharm, 2018, 127:423-431.
[35] ANDREAS C J, TOMASZEWSKA I, MUENSTER U, et al. Can dosage form-dependent food effects be predicted using biorelevant dissolution tests? Case example extended release nifedipine[J]. Eur J Pharm Biopharm, 2016, 105:193-202.
[36] EMARA L H, EL-ASHMAWY A A, TAHA N F. Stability and bioavailability of diltiazem/polyethylene oxide matrix tablets[J]. Pharm Dev Technol, 2018, 23(10):1057-1066.
[37] STERNER B, HARMS M, WEIGANDT M, et al. Crystal suspensions of poorly soluble peptides for intra-articular application: a novel approach for biorelevant assessment of their in vitro release[J]. Int J Pharm, 2014, 461(1-2):46-53.
[38] VOSSEN A C V, HANFF L M, VULTO A G, et al. Potential prediction of formulation performance in paediatric patients using biopharmaceutical tools and simulation of clinically relevant administration scenarios of nifedipine and lorazepam[J]. Br J Clin Pharmacol, 2019, 85:1728-1739.
[39] MILANOWSKI B, HEJDUK A, BAWIEC M A, et al. Biorelevant in vitro release testing and in vivo study of extended-release niacin hydrophilic matrix tablets[J]. AAPS Pharm Sci Tech, 2020, 21(3):83.
[40] LIASKONI A, WILDMAN R D, ROBERTS C J. 3D printed polymeric drug-eluting implants[J]. Int J Pharm, 2021,597:120330-120342.
[41] ZARMPI P, FLANAGAN T, MEEHAN E, et al. Biopharmaceutical implications of excipient variability on drug dissolution from immediate release products.[J] Eur J Pharm Biopharm, 2020, 154:195-209.
[42] FENG X, ZIDAN A, KAMAL N S, et al. Assessing drug release from manipulated abuse deterrent formulations.[J]. AAPS Pharm Sci Tech, 2020, 21(2):40-51.
[43] KUSHWAH V, ARORA S, KATONA M T, et al. On absorption modeling and food effect prediction of rivaroxaban, a BCS II drug orally administered as an immediate-release tablet[J]. Pharmaceutics, 2021, 13(2):283-305.
[44] LI H, ZHAO Y Q, JIANG N Y H, et al. A new method based on flow-through cell apparatus to evaluate dissolution consistency of nimodipine tablets[J]. J China Pharm Univ(中国药科大学学报), 2018, 49(3):301-309.
[45] QIAO Y, CAO Y, YU K, et al. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity[J]. Int J Pharm, 2020, 589:119830.
[46] MARTIN B, GARRAIT G, BEYSSAC E, et al. Organogel nanoparticles as a new way to improve oral bioavailability of poorly soluble compounds[J]. Pharm Res, 2020, 37(6):92.
[47] SHEN J, LEE K, CHOI S, et al. A reproducible accelerated in vitro release testing method for PLGA microspheres[J]. Int J Pharm, 2016, 498(1-2):274-282.
[48] ANDHARIYA J V, BURGESS D J. Recent advances in testing of microsphere drug delivery systems[J]. Expert Opin Drug Deliv, 2016, 13(4):593-608.
[49] KOHNO M, ANDHARIYA J V, WAN B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres[J]. Int J Pharm, 2020, 582:119339.
[50] SPEER I, PREIS M, BREITKREUTZ J. Dissolution testing of oral film preparations: experimental comparison of compendial and non-compendial methods[J]. Int J Pharm, 2019, 561:124-134.
[51] HORI S, KAWADA T, KOGURE S, et al. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository[J]. Pharm Dev Technol, 2017, 22(1):130-135.
[52] PRUESSMANN K, WENTZLAFF M, SCHILLING R, et al. Influence of dissolution vessel geometry and dissolution medium on in vitro dissolution behaviour of triamterene-coated model stents in different test setups[J]. AAPS Pharm Sci Tech, 2019, 20(1):27.
[53] SEIDLITZ A, SCHICK W, RESKE T, et al. In vitro study of sirolimus release from a drug-eluting stent: comparison of the release profiles obtained using different test setups[J]. Eur J Pharm Biopharm, 2015, 93:328-338.
[54] MA X, OYAMADA S, GAO F, et al. Paclitaxel/sirolimus combination coated drug-eluting stent: in vitro and in vivo drug release studies[J]. J Pharm Biomed Anal, 2011, 54(4):807-811.
[55] KAMBERI M, NAYAK S, MYO-MIN K, et al. A novel accelerated in vitro release method for biodegradable coating of drug eluting stents: insight to the drug release mechanisms[J]. Eur J Pharm Sci, 2009, 37(3-4):217-222.
[56] NEUBERT A, STERNBERG K, NAGEL S, et al. Development of a vessel-simulating flow-through cell method for the in vitro evaluation of release and distribution from drug-eluting stents[J]. J Controlled Release, 2008, 130(1):2-8.

基金

河北省自然科学基金项目资助(H2019206434)
PDF(973 KB)

Accesses

Citation

Detail

段落导航
相关文章

/